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Abstract 
 

Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS‑CoV‑2) virus. COVID-19 become an active 
epidemic disease due to its spread around the globe. The main causes of the spread are through 
interaction and transmission of the droplets through coughing and sneezing. The spread can 
be minimized by isolating the susceptible patients. However, it necessitates remote monitoring 
to check the breathing issues of the patient remotely to minimize the interactions for spread 
minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote 
monitoring and recognition of the breathing pattern and abnormal breath detection for timely 
providing the proper oxygen level required. We propose wearable sensors accelerometer and 
gyroscope-based breathing time-series data acquisition, temporal features extraction, and 
machine learning algorithms for pattern detection and abnormality identification. The sensors 
provide the data through Bluetooth and receive it at the server for further processing and 
recognition. We collect the six breathing patterns from the twenty subjects and each pattern is 
recorded for about five minutes. We match prediction accuracies of all machine learning 
models under study (i.e.  Random forest, Gradient boosting tree, Decision tree, and K-nearest 
neighbor. Our results show that normal breathing and Bradypnea are the most correctly 
recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well 
also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are 
better than the other two algorithms. 
 
 

Keywords: COVID-19, SAR, Breathing Abnormality, IoTs, Wearable Sensors, Machine 
Learning.  
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1. Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus causes the 
unique coronavirus illness (COVID-19) [1], which attacks the human lungs directly, causing 
severe respiratory damage. A severe case of this illness might result in serious respiratory 
failure [2]. Because COVID-19 greatly effects on the respiratory system, it's reasonable to 
believe that breathing changes might occur during the early stages of infection [3]. Very still, 
a grown-up respiratory rate ought to be somewhere in the range of twelve and twenty breaths 
each minute. It becomes sporadic assuming when less than twelve or more than twenty breaths 
each minute. Abnormal respiratory rates might be slow, shallow, fast, intense, or a 
combination of these. Unfortunately, these irregular breathing patterns happen in such a way 
that the patients are unable to perceive them. U. Saeed et al, in [4] have discussed six different 
human respiratory/breathing patterns (i.e. Biot, Kussmaul, Eupnea, Sighing, Bradypnea, and 
Tachypnea). Eupnea is a standard respiratory with a typical musicality and recurrence brought 
about by a solid way of life, however biot is a serious breathing condition with slow time 
periods of no-breaths brought about by vertebral meningitis or head wound. On the other hand 
the breathing pattern of bradypnea is gentle and narrow caused by a concussion, sleeping 
medications, a metabolic disease or a stroke. Respiratory tension causes sighing, which can be 
caused by dyspnea, anxiousness or dizziness. In contrast tachypnea has a fast and narrow 
pattern that is caused by stress, fever, shock, or exercise. At last, kussmaul (arises because of 
metabolic acidosis, diabetic ketoacidosis, or renal disappointment) is a serious and quick 
respirational example. 

In the literature, many technologies and strategies for examining and classifying distinct 
breathing patterns have been published. Spirometry is the best technique in hospitals for 
determining air volume and flow during inhalation and exhalation, however the patient must 
go to the hospital for this. As a result, techniques and systems that allow patients to be 
monitored remotely and efficiently are necessary [5]. Inductance pneumography [6], electrical 
impedance pneumography (EIP) [7], and capnography [8] are some of the other breathing 
methods utilised in hospitals. Camera-based sensing and RF sensing are examples of non-
contact measurements. A thermal imaging camera or a depth camera can be used for camera-
based sensing [9]. Both of these camera-based systems have drawbacks; for example, thermal 
imaging is sensitive to ambient heat [10], while depth cameras are costly and computationally 
intensive. The wearable mask device can correctly monitor and recognise critical respiratory 
characteristics such as respiratory rate, tidal volume, respiratory minute volume, and 
exhalation peak flow rate [11]. The C-Band detecting approaches were utilized by a few 
creators [12] for various well-being observing issues like respiratory discovery, quake, and 
persistent obstructive pneumonic illness cautioning, though the Res-Beat plot was intended to 
quantify the pace of breath [13].  

The ever-growing Internet of Things (IoTs) promotes further efficient and comprehensive 
healthcare through wearable and interconnected devices. These connect numerous wearable 
sensors, mobile devices, cloud storage, and data centres to interact, communicate, gather, and 
exchange data across a wired or wireless network [14]. Data from IoTs devices may be studied 
in depth to create insights and helps in decision-making. Deep Learning/ Machine Learning 
(ML/DL) algorithms are at present being used for this reason, and they are dislodging more 
customary methodologies because of their ability to deal with a lot of information. Different 
machine learning techniques have been routinely employed to swiftly identify possible 
coronavirus infections from real-time data [15]. 

 



1480        Sulaiman Sulmi Almutairi et al.: Inhalation Configuration Detection for COVID-19 Patient Secluded Observing  
using Wearable IoTs Platform 

Following are the main purposes of this proposed work: 
• A platform to get and perceive breathing configurations and anomalies using wearable 

sensors. 
• IoTs framework for minimizing spread through isolating the COVID-19 susceptible 

and patients.  
• Performance comparison of various machine learning algorithms for better 

recognition accuracy for the breath pattern for COVID patient breathing difficulties   
The rest of the paper is organized as follows:  

Section 2 briefly introduces the background and related works. Sections 3 explains the 
proposed framework and methodology. Section 4 discusses results and performance 
comparison, and at last we close this investigation in segment 5. 

2. Research Foundation  
In this part, momentarily we center on the foundation and the connected work done in regard 
to the stage employed for breathing patterns recognition, sensor situating, and investigation of 
various AI-enabled techniques for COVID-19 detection.  

According to recent medical studies, a person infected with COVID-19 has a different 
respiratory pattern than someone who has the flu or a normal cold. An irregular breathing rate 
is one notable sign of COVID-19 infection; those infected with COVID-19 have faster 
breathing [43]. 

Doctors use a medical instrument called a spirometer in hospitals to monitor how much 
air a person breath in and out, as well as the pace with which they breathe. Spirometry is a test 
that is used to identify asthma, chronic obstructive pulmonary disease (COPD), and other 
respiratory disorders. Spirometry can also be used on a regular basis to evaluate a person's 
lung status and see if a therapy for a chronic lung problem is improving their ability to breathe. 
Regardless, many approaches have been utilized to identify breathing patterns in real time, 
which can be useful in COVID-19 infection prediction, diagnosis, and screening [16]. In [3], 
machine learning (ML) algorithms and radio frequency sensor methods (based on software-
defined radio (SDR)) are combined. That identify and categorize various patterns of breathing. 
For classification, machine learning algorithms are used, and their performance is measured 
in terms of accuracy, training time, and prediction speed. For automatic breathing patterns 
detection a harmless breathing examination innovation is fostered in [17]. They used 
convolutional neural network for breathing event detection and patterns classification. It 
delineates that breaking down chest and stomach development information through wearable 
sensors utilizing deep learning gives a subtle approach to checking breathing patterns. 
Breathing patterns that are abnormal might be fast, slow, deep, or shallow, or a mix of these. 
Eupnea, tachypnea, bradypnea, sighing, Biot, and kussmaul are some of the various breathing 
patterns [18]. Eupnea is normal breathing, but bradypnea is shallow and slow breathing; the 
opposite if which is Tachypnea i.e., shallow, and fast breathing. Kussmaul is a profound and 
quick breath, sighing is inhalation hindered by numerous full breaths, and biot is a full breath 
with expanding terms of no inhalations. An assessment of the &gesund framework's 
respiratory rate location was proposed in [19]. &gesund is a health-assistance system that uses 
smartwatches to automatically capture extensive long-term health data. The study 
demonstrated the feasibility and accuracy of using a wristwatch to monitor respiration rate as 
a non - intrusive way of gathering long-term health data. In [11], there is a wearable, 
independent, totally coordinated cover gadget for thorough breath following in free-living 
settings. In a wearable and wireless way, the wearable mask device may offer full respiratory 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 6, June 2024                                 1481 

information. It uses Principal Component Analysis (PCA) methods to unfailingly measure 
peak flow rate, breathing rate, respiratory minute volume, and, tidal volume as well as detect 
the subject's individual respiration pattern. Using a machine learning approach, the breathing 
patterns were identified based on EEG data in [20]. It proposed a technique for reducing the 
negative implications of mouth inhalation on brain activity. Machine learning can accurately 
predict the direct implication of oral and nasal inhalation on mental performance using EEG 
data. 

A harmless SDR-based technique is proposed in [4] with advanced machine learning 
algorithms. The device is intended to identify and monitor six different human breathing 
patterns, both normal and disordered, including eupnea, bradypnea, tachypnea, biot, kussmaul 
and sighing.  It is a practical method for identifying and classifying numerous breathing 
patterns in an indoor scenario. In [21], an novel solution is proposed for linked health utilizing 
software-defined radio (SDR) technology and artificial intelligence to give an innovative 
solution by remotely monitoring vital signs such as breathing and other connected health 
throughout the quarantine (AI). In [22], a platform that uses Software Defined Radio (SDR) 
technology is proposed to identify COVID-19 signs such as coughing and 
irregular breathing, as well as track human motions. Using several approaches such as peak 
detection, Fourier transformation and zero-cross detection, this platform reliably records 
slow, normal, and fast breathing at a rate of 10, 20, and 28 breaths per minute, respectively. 
To improve outdoor safety, a hybrid IoT based monitoring system is proposed [23] that takes 
into account both health and safety. In this system, safety indicators and health signs both from 
surroundings and users are collected using wearable devices. Wi-Fi signals [24], thermal 
imaging-based solutions [25] and capacitive field sensing [26], are promising techniques for 
data detection. Additionally, smart watches are capable to detect heart and breathing 
movements and can easily communicate directly or through smartphones [19].  

The current area of research is the use of wearable devices to monitor breathing patterns 
and their recognition. McClure et al. [17] developed a deep learning detection system that uses 
skin-worn sensors along with one dimensional Convolutional neural network. Another work 
analyzed the performance and stability of BreathPrint by RNN based models. Detecting 
breathing patterns from speech using wearable devices also becomes an important field of 
research. In this area, Strik et al. [27] explore machine learning approaches and find their 
effectiveness in recognizing breathing patterns during speech. Cho et al. used Convolutional 
neural network to identify deep breathing [18]. Different authors identified and recognized 
various normal and abnormal breathing using wearable devices and machine learning 
architectures that include wearable mask along with principal component analysis techniques 
[11], bi directional and attentional GRU, LSTM algorithms [28], Complex tree, Coarse and 
Ensemble subspace KNN [3], SVM, decision tree [21], and LDA, bagged trees [29]. COVID-
19 cough and breath recognition is done by Khriji [30] in which he proposed a wearable 
devices and LSTM based model to differentiate COVID patients from those of healthy 
individuals. Comprehensive details from the literature are given in Table 1.  
 Our work for example the Gradient Boost Trees based prediction achieved F1 score 
of 0.95 for each of class 1 and class 2. While the mean F1 score of all six classes achieved is 
0.89. Whereas the mean F1 score (i.e. (0.92+0.87+0.51+0.57+0.63+0.72)/6) of reference [17] 
from literature is 0.70. Thus our system outperformed the reference [17] results. 
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Table 1. Examination and Correlation of Allied Work 
 

Ref. 
No 

Dataset Sensors/ 
Technology 

Position Breathing Patterns Algorithm Accuracy 

[17] 
 

100 normal 
people 

Accelerometer, 
gyroscope 

Attached to the 
chest and 
upper 
abdomen of 
each subject 

Normal, sighing, 
focal rest apnea, 
obstructive rest 
apnea, coughing, 
and yawning 

1-D CNN F1 score 
92%, 
87%, 
72%, 
51%, 
57%, 
63% 

[19] From 2 
sleep 
patients for 
2 nights 

Smartwatch 
(Accelerometer, 
gyroscope, PPG) 

Wrist Ballistopneumo-
graphy based 
respiratory rate 
detection 

&gesund 89% 

[11] IRB 
reference 
protocols # 
STUDY000
06562 

Wearable Mask 
device, 
Sensirion 
SFM3000 flow 
sensor 

Mouth Respiratory rate, 
tidal volume, 
respiratory minute 
volume, breath 
temperature 

PCA Correlatio
n factors 
are 1, 
0.0009, 
0.0009, 
0.997 

[20] 20 subjects EEG, EOG, 
ECG 

Scalp Nose and mouth, 
mouth breathing 
with 𝑂𝑂2 supply 

Linear 
discriminant 
analysis RF 

98% 

[28] Respiratory 
signal of 20 
subjects (12 
females, 8 
male) 

Depth camera Subjects were 
at 1-4m from 
the depth 
camera 

Eupnea, Tachypnea, 
Bradypnea, biots, 
Cheyne-stocks, 
Central apnea 

BI-AT-GRU, 
BI-AT-
LSTM, GRU, 
LSTM 

94.5% 

[3] 5 sets from 
5 persons 
(150 
experiments
) 

Radio 
Frequency 
sensing 
techniques 

- Eupnea, Bradypnea, 
Tachypnea, Biot, 
Sighing, Kussmaul 

Ensemble 
subspace 
KNN, 
Quadratic 
SVM, 
Coarse KNN, 
Complex 
Tree 

98.6%, 
 
 
97.3%, 
 
94.2%, 
 
99.4% 

[31] 76 patients 
from a sleep 
laboratory 

3D cameras The camera is 
installed in the 
ceiling, aimed 
at the patient. 

Normal breathing, 
Abnormal 
Breathing 

CNN 
 
 

61.87% 

[30] Publicly 
available 
Data for 
sick and 
non-sick 
people 
produced 
for Pfizer 
Digital 
Medicine 
Challenge 
 

Smartphone and 
wearable 
sensors 

- Audio signal for 
Coughing, 
Sneezing, and 
breathing 

LSTM 80.26% 
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[14] 2 datasets 
from 13 
subjects 

Wearable 
respiratory and 
activity 
monitoring 
system, 
Breathing 
sensor, 
Accelerometer, 

chest-worn 
band 

9 respiratory 
parameters for 15 
activities 

Hybrid 
hierarchical 
classification 
(HHC) 

97.22% 

[32] 2 males, 2 
females. 
Data 
collected for 
5 mins 

Wearable RIP 
sensors 

- Breathing 
recordings for 
reading aloud, food 
intake, resting, 
smoking 

Peak 
detection 
Algorithm 

96.6% 

[33] 328 cough 
sounds from 
150 patients 

- Data is taken 
from different 
online and 
offline sources 

COVID-19, 
Asthma, Bronchitis, 
and Healthy 

deep neural 
networks and 
TabNet 

95.04% 
and 
96.83% 

[34] Sounds 
from about 
7000 unique 
users. 

A mobile app - Sore throat, dry and 
wet cough, muscle 
ache, short breath, 
headache, 
Tightness, smell 
taste loss 

Logistic 
Regression, 
Gradient 
Boosting 
Trees and 
(SVMs) 

80% 

[35] Video data 
from five 
subjects (3 h 
for each 
subject) 

MS Kinect 
Sensor v2 

In front of the 
subject in the 
direction of 
45° at a 
distance of 
2.5 m. 

Apnea - - 

[36] Three 
breathing 
events from 
Single 
person 

USRP the distance 
between the 
subject 
and USRPs 
antenna keep it 
as 0.4 meters 

normal, shallow, 
and heavy 

KNN, DT, 
Discriminant 
Analysis 
(DA), Naive 
Bayes (NB) 

91% 

[24] 10 
participants 

Wi-Fi devices - Breathing and Heart 
rate Pattern: 
Positive, Negative 

Dynamic 
Time 
Warping 
algorithm 
 

94% 

[37] 4 samples 
from 2 
subjects 

BD and FLIR 
camera 

- Eupnea, Tacypnea, 
Kussmaul, Apnea, 
Cheyne–Stokes, 
Moderate 
obstructed, Severe 
obstructed, Plateau 
after inhale-exhale, 
and Nasal Flaring. 

A nearest 
neighbor data 
association 
(NNDA) and 
nearest 
neighbor 
Kalman filter 
(NNKF) 
based 
algorithms, 
multi-class 
SVM 
 

60% 
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[38] - Ultra-wideband 
Radar 

Radar gadget 
at 20 cm 
distance from 
the chest of an 
individual 
while lying on 
the bed in an 
ordinary state. 

Bradypnea, 
tachypnea, motion, 
eupnea, and apnea  

1-D CNN, 
SVM, MLP, 
LDA 

93.9% 

 

3. Proposed platform for COVID-19 Patient Recognition (C-PR) 
In this segment, we portray the proposed stage, information obtaining from sensors, features 
extraction, and the classifiers utilized for recognition of breathing patterns acquired from 
sensors. 
 
3.1 Software of the proposed COVID-19 Patient Recognition system 
 
Fig. 1 shows the complete design of the proposed system that comprises of three primary parts. 
In the first part it extracts sensors data and preprocess the acquired data to be suitable for 
recognition system in the second part of the architecture. In the second part it extracts features 
from the sampled data (taken from preprocessing system) and trains machine learning models 
on training dataset. Trained models are then tested on the test dataset for prediction metrics 
comparisons of the models. The tested models are deployed in real-time environment for real-
time analysis. In the third section the prediction results are displayed for monitoring by the 
domain expert (doctor) and/or user.  The doctor can prescribe medications and suggest further 
medical explorations in medical laboratories. The proposed system provides the firsthand 
knowledge and recommendation about the patient conditions. 
 
3.1.1 Data Collection 
 
For data collection, we fixed the Meta-wear sensors module (that includes accelerometer and 
gyroscope) on the lower abdomen of the participant. We fixed the accelerometer and 
gyroscope sampling frequency to 50 Hz by configuring the sensors module. 
 

 
 

Fig. 1. Detailed architecture of the proposed work 
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Table 2 describes the configuration of the sensor attached to the body in terms of quantization 
and sampling. Dimensions for both gyroscope and accelerometer are x-axis y-axis and z-axis. 
 

Table 2. Information about the Sensors Configuration 
 

Sensor Sampling frequency Quantization level 
Accelerometer 50Hz 16-bit 
Gyroscope 50Hz 16-bit 

 
Meta wear device, which contains built-in sensors, can be configured using an 

android/IOS application called metabase1 that is available online. Sensor devices and the 
Metabase app. are connected via Bluetooth. The data collection included 20 participants (of 
ages from 25 to 30) who recorded various breathing patterns. We have collected the six 
breathing patterns from each subject and each pattern is recorded for about five minutes. We 
conducted the experiments in a small room—10 square feet. The participant sat on a chair, and 
the sensor module was fixed on lower abdomen. The participants were asked to mimic six 
breathing patterns. The subject were not allowed to make any movement that can cause noise. 
The breathing patterns that we followed are: Normal, Bradypnea, Tachypnea, Biot, Kaussmaul 
and Sighing. Fig. 2 shows the actual representation of these breathing types. Table 3 shows 
the breathing patterns for which data is recorded and their respective labels.  

 
 

Fig. 2. Different breathing patterns [4] 
 

Table 3. Breathing patterns encoding 

 
 
 
1 https://mbientlab.com/tutorials/MetaBaseApp.html 

Breathing 
Pattern 

Class Label-Code Breathing 
Pattern 

Class Label-Code 

Normal Class 1 1 Biot Class 4 4 

Bradypnea Class 2 2 Kussmaul Class 5 5 

Tachypnea Class 3 3 Sighing Class 6 6 
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3.1.2 Techniques for Extracting Features and Encoding  
 

The gathered information is restricted to the window size of 15 seconds. The sets of 
features are extracted from the window. Then features are encoded to their respective labels. 
The encoded labels are used for training and testing machine learning models. The trained and 
tested models are used for deployment in real-time environment.  

Mathematical details of features extracted in time domain are given below in equations 
(1-7). The input symbols represent axes values of the accelerometer and gyroscope. For 
example xi  in equation (1) represents accelerometer axis sample value taken at rate of 50 
samples per second. 
 
Mean Feature: This feature is the arithmetic mean of the accelerometer and gyroscope data 
using equation (1). 

    𝛍𝛍 = 𝟏𝟏
𝐍𝐍
∑ 𝐱𝐱𝐢𝐢𝐍𝐍−𝟏𝟏
𝐢𝐢=𝟎𝟎                                                                (1)    

                                                      
 
Standard Deviation (SD):  This feature is formulated from the spread of sensors data about 
the mean feature as given in (2), 

   σ = �∑ (xiN−1 
i=0 −μ)2

N
                                                            (2)    

 
Entropy: Entropy given in (3), is useful to differentiate between activities.  
 

    Entropy =  − 1
N

 ∑ xi log xiN−1
i=0                                             (3) 

 
Cross correlation: Cross correlation as given in (4), helps to differentiate between activities. 
 

Cr =  
C (x, y)
σxσy

 

Whereas, C is covariance, and Cr represents cross correlation 
 

 C (x, y) =  
∑ (xiN−1
i=0 −μx)(yi−μy)

N−1
                                           (4) 

 
Zero-Crossing (ZC): The number of times the signal crosses zero and changes its sign is 
alluded to as zero-crossing. We consider ZC as given in (5) for the accelerometer along three 
axes. Mathematically, it can be written as: 
 

ZC = COUNT ({(𝑥𝑥𝑖𝑖 > 0) AND (𝑥𝑥𝑖𝑖+1 < 0)}  
OR 

{(𝑥𝑥𝑖𝑖 < 0) AND (𝑥𝑥𝑖𝑖+1 > 0)}),    0 ≤ i ≥ N −1                                  (5) 
 
Root Mean Square (RMS): RMS given in (6), is the square root of the mean square.   
 

RMS = �1
n
∑ xi2i                                                             (6) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 6, June 2024                                 1487 

Peak Value: Peak value given in (7), is defined as the highest value obtained by an 
alternating quantity during one cycle. 
 

𝑉𝑉𝑝𝑝 = 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 ∗ √2                                                            (7) 
 
3.1.3 Data Set Training and Testing Split 
 
We have divided the dataset into training and testing datasets with the ratio of about 90: 10. 
The 90 percent of data is used for training the ML models, while the remaining 10 percent for 
testing purpose. As mentioned in section 3.1.1, we have collected 6 breathing patterns from 
20 participants. Then from each breathing pattern we have extracted 7 features as discussed in 
section 3.1.2. Thus in total our dataset has 11980 samples and each has 7 features, of which 
we have used 10780 samples for training and remaining 1200 samples for testing the trained 
ML models.  
 
 
3.2 Classification Algorithms for the Proposed Work 
 
In this study we classified our sensors encoded dataset using multiple machine learning models. 
We conduct our experiments for each ML model in two phases. First we train the model with 
training dataset and in second phase use the testing dataset for evaluating the trained model. 
We then find the testing classification metrics for each pattern’s actual versus predicted labels 
using the confusion matrix.  
In our study we have used four classification models (i.e. K Nearest Neighbor, Decision Tree, 
Random Forest, and Gradient Boost Trees) and compared their prediction results on test 
dataset.  
 
3.2.1 K-Nearest Neighbour 

 
The K Nearest Neighbor (KNN) classifier uses a lethargic learning approach, which infers that 
finding the connection between input qualities and their comparing labels happens after a test 
input is gotten. This technique discovers K number of neighboring samples that are similar to 
test input from the training data. The new label for test inputs is predicted using these examples 
and their accompanying labels. This proximity is achieved either via the Manhattan distance 
or the Euclidean distance (i.e. distance from each labelled class to new test example) [39]. 

 
3.2.2 Decision Tree 
 
To make it simpler to comprehend, the decision tree receives knowledge in the form of a tree, 
which may alternatively be represented as a collection of discrete rules. The potential to use 
multiple feature subsets and decision rules at different stages of classification is the major 
benefit of the decision tree classifier. A decision tree classifier's performance is determined by 
how successfully the tree is built from the training data [40]. 
 
3.2.3 Random Forest 
 
Random forest is a versatile, simple machine learning technique that, in most cases, gives 
excellent results even without hyper-parameter adjustment. Because of its flexibility and 
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simplicity, it is also one of the most often used algorithms (it can be used for both 
regression and classification tasks). The random forest technique is a classification approach 
that uses numerous decision trees to take the judgments of many weak learners. Pruning (i.e. 
trade-off amid exactness and complication) these trees can often assist preclude over-fitting. 
Without trimming, there will be a lot of complexity, a lot of time spent, and a lot of resources 
used. This classifier aids in the prediction of patterns [41].  
 
3.2.4 Gradient Boosted Tree (GBT) 
 
Gradient boost tree is a prevalent classifier (machine learning model) because of its versatility, 
excellent modelling accuracy, and simplicity of understanding. It uses the same tree averaging 
approach as the random forest. Instead of dealing with trees with a lot of fluctuation, it creates 
little trees one by one. A new tree is added each time the iteration happens. It is continually 
working on the regression mistake that is still present [42]. Friedman invented this approach 
known as Gradient Boosted Tree. In numerical optimization of caste boosting, GBT is a 
framework that statistically approaches the error minimization by adding up weak learners. It 
employs the gradient descent method. It functions as an additive model that progresses in 
stages. In the system whenever a new weak learner is added, the old one stays the same and is 
frozen. 

4. Results and Discussion 
In this part of our research we describe results extracted from prediction experiments 
conducted on test data labels for each classifier. We have evaluated each classifier on 
performance metrics like accuracy, and precision. The plots of results and their confusion 
matrices are shown in respective classifier section.   

 For Random Forest and Gradient Boost Trees, we have calculated the information gain for 
various tree depths and number of trees. Fig. 3 shows the results for Random Forest algorithm. 

 

 
 

Fig. 3. Performance Comparison of Random Forest 

100 300 500 1000

90%,10% 88.89 89.39 89.31 89.22

80%,20% 88.19 88.11 88.36 88.48

87
87.5

88
88.5

89
89.5

A
cc

u
ra

cy
 (
%

)

Number of trees

Performance Comparison for Random 

Forest

90%,10% 80%,20%
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The confusion matrix for the maximum accuracy achieved by random forest is given in 
Table 4. The precision given in Table 4 describes that how accurately the random forest has 
predicted positive. That is out of the total positive predicted samples, how many of them are 
actual positive. For example from the dataset 199 samples are precisely predicted as 1 while 
other 12 samples predicted as label 1 are actually label 2 (4 samples), label 3 (1 sample), label 
4 (3 samples) and label 6 (4 samples). The predicted precision percentage for label 1 is 94.31, 
for label 2 is 94.74, for label 3 is 98.86, for label 4 is 84.00, for label 5 is 90.177, and for label 
6 is 82.4. On other hand the recall used in Table 4 describes that how many samples of the 
total actual positive (i.e. true positive + false negative) samples the random forest has predicted 
as positive. The dataset contains total 207 samples for the label 1 of which 199 samples are 
predicted as label 1, while 5 samples are predicted as label 2, 2 samples are predicted as label 
3 and one sample is predicted as label 4. The percentage recall for class labelled as 1 is 96.14, 
for class labelled as 2 is 91.84, and for class labelled as 3 is 93.00. The recall for classes 
labelled as 4, 5, and 6 are 83.58%, 88.06%, and 83.33% respectively. 
 
 

Table 4. Confusion Matrix of Random Forest Classification 
 

      Actual 
Predicted 1 2 3 4 5 6 Class 

Precision 
1 199 4 1 3 1 4 94.31% 
2 5 180 1 3 0 1 94.74% 
3 2 4 186 8 1 6 89.86% 
4 1 4 5 168 12 10 84.00% 
5 1 1 2 4 177 11 90.177% 
6 1 3 5 15 11 160 82.47% 
Class 
Recall 

96.14% 91.84% 93.00% 83.58% 88.06% 83.33%  

 
 
Fig. 4 shows the Receiver Operating Characteristics (ROC) curves of random forest 
classification for each class. For normal breathing and bradypnea classes Area Under the 
Curve (AUC) values are 0.97 each out of 1. While for tachypnea and kussmaul the AUC values 
are 0.94 each out of 1. The AUC for each of biot and sighing breathing patterns is 0.90.  
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Fig. 4. Class-wise Receiver Operating Characteristic Curves by Random Forest 
 
Fig. 5 shows the results for Gradient Boost Trees. The figure shows that on average the 
accuracy increases with increasing the number of trees. 
 

 
 

Fig. 5. Performance Comparison of Gradient Boost Trees 
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The confusion matrix for the maximum accuracy achieved by gradient boost trees is given in 
Table 5. The precision for class labelled as 1 is 94.71%, for class labelled as 2 is 95.34%, for 
class labelled as 3 is 87.56%, for class labelled as 4 is 83.50%, for class labelled as 5 is 89.80%, 
and for class labelled as 6 is 83.77%. Whereas the recall percentages for classes labelled as 1, 
2, 3, 4, 5, and 6 are 95.17, 93.88, 91.50, 83.08, 87.56, and 83.33 respectively. The total data 
set samples for labels 1, 2, 3, 4, 5, and 6 are 207, 196, 200, 201, 201, and 192 samples 
respectively. Out of the 207, 196, 200, 201, 201, and 192 samples for labels 1, 2, 3, 4, 5, and 
6 the gradient boost trees model predicted accurately 197, 184, 183, 167, and 160 samples 
respectively. 
 

Table 5. Confusion Matrix of Gradient Boost Trees Classification 

 
 

 
 

Fig. 6. Class-wise Receiver Operating Characteristic Curves by Gradient Boost Trees 

     Actual 
Predicted 1 2 3 4 5 6 Class 

Precision 
1 197 4 2 3 1 2 94.71% 
2 3 184 1 2 1 2 95.34% 
3 3 2 183 11 2 8 87.56% 
4 1 2 6 167 12 12 83.50% 
5 2 2 2 7 176 8 89.80% 
6 2 3 6 11 10 160 83.77% 

Class 
Recall 

95.17% 93.88% 91.50% 83.08% 87.56% 83.33%  
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Fig. 6 shows the class-wise Receiver Operating Characteristics (ROC) curves of gradient boost 
trees classification. For normal breathing and bradypnea braething patterns the Area Under the 
Curve (AUC) values are 0.97 each out of 1. While for tachypnea AUC value is 0.93 and for 
kussmaul the AUC value is 0.94 out of 1. The AUC for each of biot and sighing breathing 
patterns is 0.90.  

For Decision Tree, we have calculated the information gain for variable depth of the tree 
for two different ratios for training and testing datasets. The results are shown in Fig. 7.  
 

 
 

Fig. 7. Performance Comparison of Decision Tree 
 

The confusion matrix for the maximum accuracy achieved by decision tree is given in Table 
6. The precision for class labelled as 1 is 89.27%, for class labelled as 2 is 85.22%, for class 
labelled as 3 is 84.80%, for class labelled as 4 is 77.45%%, for class labelled as 5 is 91.35%, 
and for class labelled as 6 is 78.57%. Whereas the recall percentages for classes labelled as 1, 
2, 3, 4, 5, and 6 are 88.41, 88.27, 86.50, 78.61, 84.08, and 80.21 respectively. Out of the 207, 
196, 200, 201, 201, and 192 samples for labels 1, 2, 3, 4, 5, and 6 the decision tree model 
predicted accurately 183, 173, 173, 158, 169, and 154 samples respectively. 
 

Table 6. Confusion Matrix of Decision Tree Classification 
 

        Actual 
Predicted 1 2 3 4 5 6 Class 

Precision 

1 183 7 2 6 4 4 89.27% 
2 11 173 3 6 3 7 85.22% 
3 6 5 173 14 1 6 84.80% 
4 3 5 13 158 11 14 77.45% 
5 1 2 2 4 169 8 91.35% 
6 3 4 7 14 14 154 78.57% 
Class Recall 88.41% 88.27% 86.50% 78.61% 84.08% 80.21%  
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Fig. 8 shows the class-wise Receiver Operating Characteristics (ROC) curves of decision tree 
classification. For normal breathing the AUC value is 0.93 and for kussmaul the AUC value 
is 0.94 out of 1. The AUC values for each of tachypnea and bradypnea braething patterns is 
0.91. The AUC for each of biot and sighing breathing patterns is 0.87 out of 1.  
 
 

 
 

Fig. 8. Class-wise Receiver Operating Characteristic Curves by Decision Tree 
 
 

We have utilized 10 folds cross approval technique for KNN and thought about the outcomes 
based on distances i.e., Euclidean and Manhattan. The consequences of KNN calculation are 
displayed in Fig. 9.  
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Fig. 9. Performance Comparison of KNN 
 
 

The confusion matrix for the maximum accuracy achieved by KNN is given in Table 7. The 
precision for class labelled as 1 is 83.3%, for class labelled as 2 is 74.9%, for class labelled as 
3 is 77.8%, for class labelled as 4 is 79.5%, for class labelled as 5 is 87.5%, and for class 
labelled as 6 is 80.5%. Whereas the recall percentages for classes labelled as 1, 2, 3, 4, 5, and 
6 are 89.1, 83.1, 80.4, 76.2, 85.5, and 68.2 respectively. As the KNN model has no training 
mechanism that is, it makes predictions whenever it is subjected to the dataset. Thus in our 
experiment KNN is applied to the whole dataset. While the results for random forest, gradient 
boost trees, and decision trees discussed previously are based on the test dataset only. Out of 
the 2213, 2175, 2070, 1928, 1967, and 1628 samples for labels 1, 2, 3, 4, 5, and 6 the KNN 
model predicted accurately 1844, 1629, 1611, 1533, 1722, and 1311 samples respectively. 
 

Table 7. Confusion Matrix of KNN Classification 
 

             Actual 
Predicted 1 2 3 4 5 6 

Class 
Precision 

1 1844 109 29 32 30 25 83.3% 
2 139 1629 83 42 24 44 74.9% 
3 52 139 1611 117 23 62 77.8% 
4 56 113 152 1533 54 103 79.5% 
5 38 52 42 77 1722 83 87.5% 
6 84 133 153 127 114 1311 80.5% 
Class Recall 89.1% 83.1% 80.4% 76.2% 85.5% 68.2%  

 
 

1 2 3 4 5

Euclidean 78.198 76.738 77.28 77.88 77.92

Manhattan 80.26 79.01 80.54 80.21 80.47

74
75
76
77
78
79
80
81

A
cc

u
ra

cy
 (
%

)

Range of K

Performance Comparison of K 

Nearest Neighbor with cross 

validation folds 10 

Euclidean Manhattan



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 6, June 2024                                 1495 

 
 

Fig. 10. Class-wise Receiver Operating Characteristic Curves by KNN 
 
Fig. 10 shows the class-wise Receiver Operating Characteristics (ROC) curves of KNN 

classification. For normal breathing the AUC value is 0.93 and for kussmaul the AUC value 
is 0.92 out of 1. The AUC values for tachypnea and bradypnea braething patterns are 0.88 and 
0.89 respectively. The AUC for biot breathing pattern is 0.86 and for sighing breathing pattern 
the AUC is 0.83 out of 1. 

From the results shown, normal breathing and Bradypnea are the most correctly recognized 
breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Overall, 
the performance of Random Forest and Gradient Boost Trees is better than the other two 
algorithms. 

5. Conclusion and Future Directions 
We presented sensors-based IoTs system solving abnormal breathing pattern detection and 
identification problem in order to minimize the COVID-19 spread. In traditional COVID-19 
monitoring and quarantine management is done through medical staff that increases chance of 
the spread. The proposed wearable IoTs framework consists: (i) wearable sensors at the belly 
position for breathing pattern data acquisition (ii) Bluetooth layer to pass the data and 
messages between sensors and server (iii) server layer for data storage, recognition, and 
visualization; and (iv) Client Application layer for remote monitoring, health assessment, and 
providing feedback. We collected the dataset of six breathing patterns from twenty subjects. 
We compared four machine learning algorithms and among them the Random Forest and 
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Gradient Boost Trees achieved the better detection results with AUC from 0.90 to 0.97. The 
Gradient Boost Trees based prediction achieved F1 score of 0.95 for each of class 1 and class 
2. While the mean F1 score of all six classes achieved is 0.89. Whereas the mean F1 score (i.e. 
(0.92+0.87+0.51+0.57+0.63+0.72)/6) of reference [17] from literature is 0.70. 
We suggest further investigation of breathing patterns detection in a noisy environment that 
will make the system robust and more reliable in the future. 
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